
From Zero to Python in 10.5 hours: Building Foundational Programming Skills with 

Marine Biology Graduate Students and Researchers in an Introductory Workshop Series 

 

Geoffrey P. Timms, Marine Resources Library, College of Charleston, 66 George Street, 

Charleston, SC 29424, USA. timmsgp@cofc.edu. https://orcid.org/0000-0003-0970-2618 

 

Jeffrey R. Guyon, National Oceanic and Atmospheric Administration, National Ocean Service, 

National Centers for Coastal Ocean Sciences, Hollings Marine Laboratory, Charleston, SC 

29412, USA. jeff.guyon@noaa.gov  https://orcid.org/0000-0003-3358-1318   

https://loop.frontiersin.org/people/1770432/overview 

 

Abstract 

Programmatic processing, analysis, and visualization of scientific research data necessitate 

computational skills that scientists do not consistently acquire during their education. Python is a 

programming language currently in the ascendant among the scientific community. In early 

2022, 25 marine scientists and marine biology graduate students were introduced to the 

fundamentals of Python programming in a 10.5-hour workshop series offered over seven weeks. 

A functional, web-based Python environment using Jupyter Notebooks, JupyterLab, Binder, and 

GitHub was paired with scaffolding and active learning pedagogy, to ensure an engaging 

learning experience. We describe the course design, adaptations, and outcomes, and offer 

recommendations for developing a similar introductory programming workshop. 

 

Keywords: Python, Coding, Programming, Jupyter notebooks, Training, Workshop 

mailto:jeff.guyon@noaa.gov


Introduction 

The evolution of science and technology has significantly increased the volume of data that 

researchers can generate and has diversified the methods by which data can be analyzed and 

visualized. Techniques to clean, synthesize, and analyze data have also evolved to harness ever 

expanding computational power (Lewis et al., 2018). From peptide-taxon attribution in marine 

metaproteomics (Saunders et al., 2020) to determining bioturbation levels by analyzing marine 

core images (Casanova-Arenillas et al., 2020), marine scientists increasingly programmatically 

process and analyze data. This requires that researchers acquire and maintain a computational 

skill set that enables them to efficiently accomplish a variety of data processing tasks throughout 

the research data lifecycle (Ekmekci et al., 2016). This paper introduces a workshop series 

developed to support marine biology graduate students and marine scientists in the development 

of foundational Python programming skills. 

Python (https://python.org) is a programming language that is well suited to data 

processing in biological science, especially for both students and established researchers who 

have not previously used a programming language (Badenhorst et al., 2019; David, 2021). 

Python is also attractive due to the availability of many discipline-specific add-on packages such 

as SciPy (algorithms for scientific computing, https://scipy.org) and Biopython (computational 

molecular biology, https://biopython.org/). The original Python programming language was 

published in early 1991 and, over the last 31 years, over 25 version releases have been 

distributed. All Python releases are open source and available at https://www.python.org as no 

cost downloads available in Linux, macOS, and Windows distributions through the gracious 

support of numerous donors. Given its ease of use and powerful programming capabilities, 

Python is one of the most popular programming languages in use today supporting web 

https://python.org/
https://scipy.org/
https://biopython.org/
https://www.python.org/


applications, scripting, database, data science and machine learning applications. Python now has 

over 10.1 million active developers; a number which has been increasing with Python’s 

popularity in supporting data science applications used by an estimated 70% of machine learning 

developers (Voskoglou et al., 2021). 

The College of Charleston is a public liberal arts institution, located in Charleston, South 

Carolina. While the main campus is located in downtown Charleston, the college’s Grice Marine 

Laboratory and the associated Graduate Program in Marine Biology (GPMB) are located to the 

southeast of Charleston, across Charleston Harbor, on the historic Fort Johnson Campus. The lab 

supports teaching and research in evolutionary biology, marine biogeography, cellular and 

molecular biology, benthic ecology, immunology, microbial ecology, phytoplankton ecology, 

environmental physiology, fish systematics, invertebrate zoology, marine genomics, and other 

marine science disciplines (https://gricemarinelab.cofc.edu/). Students in the graduate program 

typically learn R, a programming language for statistical computing and visualization, to support 

their thesis research. 

The GPMB is co-located with the South Carolina Department of Natural Resources 

Marine Resources Research Institute (MRRI) and the Hollings Marine Laboratory which is part 

of the National Oceanic and Atmospheric Administration’s (NOAA) National Centers for 

Coastal Ocean Science (NCCOS) with research partners from the National Institutes of 

Standards and Technology (NIST) and the Medical University of South Carolina (MUSC). This 

research environment provides opportunities to connect the College of Charleston marine 

biology students and professors with state and federal coastal researchers, supporting a highly 

collaborative and unique location for conducting marine research into South Carolina’s natural 

treasures. As with many other locations in the country, these collaborations were interrupted over 

https://gricemarinelab.cofc.edu/


the last few years with several closures following the COVID epidemic in 2020 through 2022, 

heavily impacting student research and access for others working on the campus. 

The Marine Resources Library is located inside the MRRI and is operated as a branch of 

the College of Charleston Libraries. It is staffed by one faculty librarian and one Library 

Technical Assistant. As a collaborative endeavor, both supported by and serving the partner 

institutions at Fort Johnson, the librarian has implemented initiatives to train its constituents in a 

variety of library-based skills. As a regular user of Python, the librarian sought to assess the level 

of interest among the Fort Johnson research community in learning this programming language, 

through a survey distributed on August 26, 2021. Participants selected a response on a five-point 

Likert-type scale to the question “How interested would you be in joining a Marine Resources 

Library workshop series to gain practical introductory-level experience with the Python 

programming language?” They were also asked to indicate their current level of experience with 

a programming language on a Likert-type scale and to provide their institutional affiliation. 

A total of 76 responses (representing approximately 30% of the campus scientific 

workforce) was encouraging, especially given that most of the staff and students are not 

computer programmers, but more likely looking for tools to help them best analyze their data. 

The results from the survey showed that 53 of the 76 respondents were moderately to 

enthusiastically interested in participating in an introductory Python training course, especially 

College of Charleston students in the marine biology program and the academic/state researchers 

(Figure 1). The questionnaire also highlighted that most interest was at the introductory level 

(Figure 2). 

[Insert Figure 1 here] 



Figure 1. Interest in Python programming course development based on local affiliation. “CofC” 

is the College of Charleston, “GPMB Master’s Student” are the Graduate Program in Marine 

Biology graduate students, “SCDNR” is the South Carolina Department of Natural Resources, 

“NOAA” is the National Oceanic and Atmospheric Administration and contains mostly 

responses from staff from the National Ocean Service’s National Centers for Coastal Ocean 

Science Hollings Marine Science Laboratory, “NIST” is the local National Institutes of 

Standards and Technology staff, and “MUSC” are replies from Medical University of South 

Carolina personnel working on the Fort Johnson campus. 

[Insert Figure 2 here] 

Figure 2. Interest in Python programming course development based on programming 

experience. 

 

Based upon the questionnaire responses, it was clearly recognized that respondents perceived a 

potential application of Python in their marine science work. This perception is further supported 

by evidence that some marine education programs are already training marine scientists in 

Python programming (for example, see https://datalab.marine.rutgers.edu/2020/11/introduction-

to-python-data-analysis/ and http://mckays630.github.io/2015-05-04-usfcms/) for its applications 

in ocean science. On the Fort Johnson campus, the Python programming language has been used 

to develop a library Web application to visually promote new book purchases, assist in library 

collection analysis, quantify coral bleaching from photos, count the number of bacterial colonies 

on plates, process metagenomic DNA, automate web searches, and develop a prototype 

application to locate dolphins. There is anticipation that the need for Python programming will 

continue to grow in the upcoming years to support fishery management, data analysis, and 

https://datalab.marine.rutgers.edu/2020/11/introduction-to-python-data-analysis/
https://datalab.marine.rutgers.edu/2020/11/introduction-to-python-data-analysis/
http://mckays630.github.io/2015-05-04-usfcms/


machine learning projects. It is thought that all these efforts could be supported with the 

development of local programming expertise providing a community of interested biologists and 

scientists using Python to support their analyses.  

While there is great Python documentation available on the distribution website, in 

numerous outstanding books, through websites like Stack Overflow (https://stackoverflow.com), 

and in many online videos, the best option to meet the local need for programming expertise was 

determined to be localized training since it can sometimes offer the best results for developing 

local knowledge and can offer highly targeted coding examples pertinent to the interests of the 

students. In addition, offering a series of local courses would provide opportunities for students, 

faculty, and state/federal researchers to develop the professional coding networks which could 

help support a local Python community after the course. The workshop series was developed by 

Geoff Timms, Librarian for Marine Resources, College of Charleston Libraries, and supported 

by Jeff Guyon, Branch Chief, Key Species and Bioinformatics Branch, NOAA/NOS/NCCOS 

during the fall semester, 2021. 

 

Course Design and Content 

Learning Cohorts 

To encourage a participatory and engaging learning experience, the training sessions were 

designed to accommodate a maximum of nine in-person participants, with two cohorts initially 

anticipated. Small cohorts were chosen to maintain a sense of informality about the training and 

to encourage learning through a supportive social presence and a cognitive presence enriched 

with participatory activities, which are two of the three key tenets of the Community of Inquiry 

model of education (Alman et al., 2012; Rausch & Crawford, 2012). Furthermore, the low instructor-



to-participant ratio would increase opportunities for individuals to engage with both the 

instructor and each other. Remote participation was not initially offered to participants to 

dissuade their adoption of a spectator role that is easily accomplished within the relative 

anonymity of webinars. An intimate and informal learning environment was provided to 

encourage participants to interact and learn from each other as well as from the instructors. 

  

Web-based Python Platform 

As a practical programming course, participants needed access to a Python environment for a 

positive active learning experience. Python is usually installed on a server or end-user computer, 

along with additional libraries and dependencies needed to achieve the user’s programming 

goals. In addition, programmers often install Integrated Development Environment (IDE) 

software to efficiently write, test, and troubleshoot code. Workshop participants from Federal 

and State agencies frequently do not have the freedom to install software at will on their work 

computers. For this reason, a hosted Python environment, accessible on a web browser, was 

chosen to facilitate hands-on learning activities. A further advantage of a hosted environment is 

that once it is configured, all users work upon a consistent, common platform. 

This introductory course assumed no prior programming experience, and it was thought 

that participants would be best served by supporting them to focus primarily on writing Python 

code rather than additionally trying to learn to use an IDE. Thus, Jupyter Notebooks were chosen 

as the environment in which participants would experience Python. Jupyter Notebooks, used 

within JupyterLab (https://jupyter.org/), are arranged such that a single column of cells can be 

designated as executable code, markdown (formatted text), or raw (unformatted) text. Each code 

cell may be executed independently of other cells, or all code cells may be executed in automatic 

https://jupyter.org/


succession. Much like in an IDE, Python error messages are displayed, appearing immediately 

after the code cell in which an error occurs. The text cells can be used to provide supplemental 

information and explanations, as well as questions, tasks, or links to external resources. In 

addition to textual narrative, media like YouTube videos and images can be embedded in cells, 

while code can generate interactive visualizations within the notebook (Davies et al., 2020). 

While interactive notebooks function as a place to write code and analyze data, they also provide 

researchers the opportunity to document their research strategies and outcomes in situ (Perkel, 

2018). These features make Jupyter Notebooks an ideal environment for participants to use 

during hands-on training sessions as well as a reference for independent use both before and after 

the scheduled meetings. 

To serve executable Jupyter Notebooks to users in their browsers, the notebooks must be 

hosted on a server on which Python is installed and configured. For this course, the Jupyter 

Notebook files were maintained in a GitHub code repository (https://github.com/). Binder 

(https://mybinder.org/) was used to create a Docker image of the files in the GitHub repository, 

including reading a Python dependencies configuration file in which the version of Python and 

additional required libraries were specified. A JupyterHub server then served the Docker image 

as an interactive session in the user’s browser, allowing the user to execute Python code. All 

these services were freely available and easy to configure; a distinct advantage over the potential 

cost and time commitment to manage one’s own cloud based JupyterHub server (Kim & Henke, 

2021). The Turing Way Community, in its handbook, provides concise guidance to quickly 

develop and launch this environment (The Turing Way Community et al., 2019). 

  

Course Structure and Python Competencies 

https://github.com/
https://mybinder.org/


The course was designed to introduce participants to writing Python code and assumed no 

previous coding experience in any programming language. In addition to building a practical 

foundation of Python knowledge and experience, another desired outcome was to share and 

discuss potential applications of Python with specific examples pertinent to their research. 

Similar goals have been addressed in different ways in other programming courses. In one 

example, a course follows a logical progression from introducing Python syntax and basic 

programming competencies to applying them in common bioinformatics problems (Mariano et 

al., 2019). In an intensive four-day Python workshop, participants learned and exercised Python 

skills in morning sessions before attending afternoon seminars where different applications of 

Python were demonstrated by biologists from various subdisciplines. These were followed by 

group coding activities (Zuvanov et al., 2021). Making a more defined distinction between 

writing code and solving problems with code, a Computational Approaches for Life Scientists 

credit course in Israel had a programming prerequisite and introduced the Python language in the 

first six hours. The course subsequently focused on training students in structured computational 

thinking, where they applied Python to solve biological problems (Rubinstein & Chor, 2014). The 

workshop series described here focused significantly upon developing basic Python 

programming competencies, incorporating limited exposure to potential applications throughout. 

Recognizing that many participants support fieldwork activities in early spring, a seven-

week series of training sessions was designed, each of 90 minutes duration, to begin in the 

second week of January 2022. The session titles are listed below and the structure for each 

session, including the session learning outcomes, is outlined in Appendix 1: Session 

Descriptions. 

 



Session 1 – Introduction to Jupyter Notebooks, data types and data structures   

Session 2 – Getting content from iterables like lists and dictionaries 

Session 3 – Creating and calling user-defined functions 

Session 4 – Working with CSV files 

Session 5 – Searching for string matches in data structures and matching patterns in data with 

regular expressions 

Session 6 – Getting web-based data from Application Programming Interfaces (APIs) 

Session 7 – Working with classes 

 

Session Design 

Bringing individuals together for training inevitably results in a group with varied learning 

experiences, preferences, and expectations. This is particularly true when participants represent 

multiple age groups spanning several decades and broad levels of academic attainment ranging 

from undergraduate degrees to post-doctoral qualifications. To stimulate participants’ interest, 

each session utilized several teaching styles, engaging learners with observation, 

reflection/discussion, experimentation, and problem-solving activities. At the end of each 

session, participants were presented with a short multiple-choice quiz to complete before the next 

session. Quizzes were developed on the Springshare LibWizard quiz platform 

(https://springshare.com/libwizard/) and used to identify areas of participant confusion as well as 

to aid with the transfer of knowledge to longer-term memory, through recall. 

Session content and the corresponding notebooks were organized to scaffold learning. In 

coding, active learning and critical thinking are two key processes to develop problem solving 

skills. Coding concepts were introduced through demonstrations and executable code, 



participants were asked “what would happen if…” questions and the instructors fielded 

participant questions, and then the class transitioned into applying concepts with problem-based 

coding activities, including subsequent discussion. This progression places increasing 

responsibility upon the student to take ownership of learning to solve problems while scaffolding 

provides an appropriate support structure, with the goal of increasing independence in learning 

(Greening, 1998). Scaffolding also helps learners achieve success beyond their own existing 

abilities, which is particularly important in subjects where they have no previous experience 

(Grévisse et al., 2019). Participants in the course were able to access the Jupyter Notebooks in 

their own time after the class to help facilitate the learning process both through review and 

additional experimentation. 

Inter-session scaffolding employed competencies acquired in previous sessions to 

reinforce accumulated knowledge through application as well as to aid retention. While the first 

two sessions introduced simple but essential concepts, they were reinforced in subsequent 

sessions in the context of other code. The fundamentals of iteration and conditional logic were 

introduced in Session 2 and were featured in almost every subsequent session. User defined 

functions, first introduced in Session 3, were also used in Sessions 5 and 7 to demonstrate their 

role in creating efficient and well-structured code. Regular reuse of fundamental coding concepts 

in problem-solving activities across multiple sessions enabled users to both recall and apply 

discreet competencies in functional code. 

Even though this course was introductory, participants were trained to address and handle 

errors, equipping them with a key competency required to become independent in learning to 

write and test code. Programming languages are not static; Python, among other languages, is in 

continual development and syntax can change. Thus, participants learned to read and interpret 



syntax error messages and, in some sessions, were also intentionally led into situations that 

resulted in value or logical errors. By learning to embrace error messages as a source of 

information about the nature and location of the error, participants gained insight into resolving 

coding problems. 

  

Monitoring Participant Progress in Coding Activities 

While hands-on coding activities were anticipated to be important active learning opportunities, 

they also presented challenges for managing the flow of each session. Individuals of diverse 

backgrounds, experiences, and preferred learning styles complete problem-solving tasks at 

different rates. From an instructor’s perspective it is difficult to judge how each participant is 

progressing, especially when those who are struggling may be reluctant to reveal publicly that 

this is the case. To keep the session moving on schedule while being attentive to participants’ 

needs requires instructor awareness of the progress of the class with the assigned activities. 

Having previously used web-based virtual whiteboards in other contexts, a Miro board 

(https://miro.com) was created on an educator account to enable users to anonymously indicate 

completion of each activity. An instructor can create a Miro board with a fixed formatted 

background and instructions, while providing participants the ability to overlay virtual sticky 

notes, shapes, and text. Users can access the board in a web browser and use it without logging 

in, thus preserving anonymity. Laid out in a grid, the board for this course represented each 

session as a row and each coding activity as a labeled box within the row. Above the boxes were 

a series of colored “dots” where each color was affiliated with a learning cohort (see Figure 3). 

As users completed each activity, they were instructed to drag a dot of the appropriate color into 

the box for the activity. With this reference, the instructor can quickly assess how many people 

https://miro.com/


in that cohort have completed a task, indicating if there is general understanding or confusion 

about the activity. 

  

[Insert Figure 3 here] 

Figure 3. Screenshot of a Miro board showing participant indicators (dots) of activity 

completion. 

  

Supplemental Resources in an Online Guide 

To support self-driven learning, a web-based guide was created on the college’s LibGuides 

platform, where online library guides are hosted. The main guide page contains links to the 

GitHub repository and to launch the Jupyter Notebooks, as well as links to two Miro boards. A 

Question-and-Answer page was created to capture participant questions over the duration of the 

course and to provide answers for reference. Links to online resources like official Python 

documentation (https://docs.python.org/3/), Stack Overflow (https://stackoverflow.com/), 

glossaries, tutorials, biology-related APIs, etc. are found on a Resources page. One of each 

week’s sessions was recorded using Zoom and uploaded to YouTube. A Recordings page on the 

guide contains each of these YouTube videos as embedded video players. The online guide 

served both as a launching point at the beginning of each training session as well as an ongoing 

reference for participants, including after the course finished. Access to the guide was password 

protected to prevent non-participants from accessing the quizzes and editing the Miro boards. 

  

Running the Course 

Registration 

https://docs.python.org/3/
https://stackoverflow.com/


Two cohorts were initially scheduled on Tuesday mornings and Friday afternoons. Following 

promotion of the upcoming sessions in the fall of 2021, registration was launched using 

Eventbrite (https://www.eventbrite.com/) on November 29, 2021, limiting registration to nine 

participants per cohort. The 18 available seats were all booked within three hours. After 

receiving approximately 15 more inquiries about registration, a third cohort was scheduled on 

Wednesday mornings and offered registration directly to participants in chronological order of 

their registration inquiry. The third cohort was filled within 5 days. 

The demographics of registrants are shown in Figures 4 and 5. Almost 60% were 

SCDNR researchers, with smaller representation from NOAA and marine biology graduate 

students. The most common level of academic attainment was 78% either holding (n=14) or 

currently working on (n=7) a master’s degree and 11% holding a bachelor’s or Ph.D. degree. 

 

[Insert Figure 4 here] 

Figure 4.  Affiliations of course registrants. 

 

[Insert Figure 5 here] 

Figure 5.  Educational attainment of course registrants. 

 

Expressed Expectations of Participants 

At the beginning of Session 1, participants were asked to answer the questions “What do you 

hope to achieve in this course?” and “How do you hope to use Python in the future?” using 

virtual sticky notes on a Miro board. Answers were coded and are found in Tables 1 and 2 

respectively. 



[Insert Table 1 here] 

[Insert Table 2 here] 

Adaptation of Format and Cohorts 

Soon after registration of 27 participants was complete, some NOAA personnel indicated that 

they would still be working remotely in early 2022 and wanted to participate virtually. While 

other partner institutions’ COVID-19 restrictions were alleviated enough to allow in-person 

participation, some personnel continued to enter precautionary quarantine at home due to 

potential exposure to the virus, so we agreed to offer remote participation. The college’s Zoom 

platform (https://zoom.us/) was determined to be the web conferencing utility accepted for use 

by all partner institutions. To maintain the small cohorts, however, registration in each cohort 

was not increased beyond nine members. 

As soon as the course started, other scheduling complications began to emerge that 

necessitated a flexible attitude towards the planned cohorts. Participants from SCDNR 

experienced the greatest schedule conflicts. Some participants were scheduled to attend a 

national fisheries conference being held locally. Then a mandatory safety training day was 

announced, preventing most members of a single cohort from attending Python training in their 

scheduled session that week. Several people became unwell and had to either miss a session or 

attend remotely. Lastly, mandatory fieldwork schedules were determined by supervisors, 

sometimes at short notice, and interfered with participation particularly during the latter part of 

the course. 

In response to these challenges and to keep learning opportunities as open as possible, 

participants were informed that if they could not attend their cohort’s session in any week, they 

were welcome to join any of the cohorts remotely. In addition, one session from each week was 

https://zoom.us/


recorded using Zoom and made available in the online guide. As a result, more people elected to 

participate remotely, and no session was attended in person by more than six people. Some 

participants used this freedom to choose each week which cohort’s session best suited their 

schedule, reducing the constancy of the cohorts. Two or three participants stopped attending 

synchronous sessions and used the recordings as their point of participation. Ultimately, it was 

deemed more important that participants could attend a session each week than it was for them to 

participate in the same cohort each week. 

Teaching a hybrid Zoom session where participants are participating both in-person and 

remotely impacts how an instructor conveys information and manages interaction. Furthermore, 

the instructor’s attention becomes spread in multiple directions, including in-person engagement, 

virtual engagement by voice and by text, and ensuring that all participants are seeing the same 

material. This split attention can distract the instructor from teaching, coaching, and 

troubleshooting effectively. To alleviate this, Timms led sessions 1-6 in person and Guyon 

attended remotely (sessions 1-4) whereby he coordinated communications with Zoom 

participants and helped troubleshoot any technical difficulties. In the final session, Guyon 

instructed remotely and Timms provided in-person support in the classroom. 

 

Observations with Problem-based Learning Activities 

Short hands-on coding activities were designed to enable participants to apply what had just been 

learned, in a problem-based setting. Participants, however, developed conceptual understanding 

at different rates during sessions, resulting in varied abilities to design a coded response to the 

task. In some cases, individuals could not translate the task into computational thinking, whereby 

writing code would logically achieve the desired outcome. Usually, the task was very similar to 



something previously demonstrated and discussed. In response, these activities were introduced 

with intentional reference to similarities with what had previously been learned. Furthermore, to 

guide participants towards a solution, the overarching framework of the solution was 

demonstrated without immediately completing all the code. For example, if the solution 

necessitated iterating over a dictionary to extract data, the instructor presented the initial “for” 

loop to trigger an association with previous learning. As time spent on the activity progressed, 

parts of the solution were added for participants to reference, either for comparison with their 

own code or for guidance about what to do next. 

As participants tried to write their own code, they inevitably experienced syntax, variable 

referencing, and logical problems. For example, when writing loops or functions, participants 

regularly missed the colon at the end of the opening statement or did not correctly or consistently 

indent subordinate lines of code. The single “=” (variable assignment operator) and double “==” 

(equality evaluation operator) were also frequently used incorrectly. Reminders were provided 

about common mistakes both while introducing the activities and as the activities progressed, 

which helped participants preempt or resolve problems quickly. Logical and variable referencing 

problems presented a greater challenge. These required that the instructor look at the individual’s 

code, which took focus away from the class as a whole and, in some cases, occupied excessive 

time to identify a problem. Having one instructor online helping remote participants was 

especially helpful, and small sections of code could be shared for troubleshooting in the Zoom 

chat. 

 

 

Outcomes 



Of 27 registered participants, one did not attend any sessions and one attended only the first 

session. The remaining 25 continued participating through the end of the course. The week after 

the course ended, an online survey was distributed to the 25 active participants. After two weeks, 

15 responses were received and analyzed. The first question asked participants to indicate their 

preferred method for attending the training (see Figure 6). All but one response indicated a 

preference for live participation, although they were evenly distributed between attending in 

person and remotely. One participant indicated a preference for watching recordings. 

 

[Insert Figure 6 here] 

Figure 6.  Answers from evaluations in response to the question, “What was your preferred 

method for participating in the Python training?” 

 

Most of the remaining questions asked participants to use a Likert-type scale to respond to 

questions about each participation option, the content and design of the course, their confidence 

in continuing to learn Python, and their awareness of its potential application in their work (See 

Figure 7). 

 

[Insert Figure 7 here] 

Figure 7.  Box and whisker plots showing ratings (1 = “Not at all” and 5 = “Very”) selected in 

response to a series of Likert-scale questions. 

 

 



A final Likert-type question asked respondents to indicate their level of interest in attending 

higher level Python courses focused on specific competencies. Four subject areas were listed, 

and respondents were invited to suggest other topics. The indicators of interest are presented in 

Figure 8. 

 

[Insert Figure 8 here] 

Figure 8. Box and whisker plots showing expressed level of interest (1 = “Not at all” and 5 = 

“Very”) in attending future Python training focused on specific competencies. 

 

Data from the submitted post-session quizzes are found in Figure 9. Completion of quizzes was 

highest in the first week at 80.7%, but the number of submissions diminished nearly every week, 

until only five submissions (20% participation) were received after the final session. The lowest 

score each week demonstrated an upward trend, while the standard deviation trended 

downwards. 

 

[Insert Figure 9 here] 

Figure 9.  Box and whisker plots of quiz scores for each of seven training sessions. 

 

 

Discussion 

Based upon the positive feedback from 15 respondents, a 60% response rate, this course can be 

considered to have successfully provided a practical introduction to learning Python. In addition 

to the formal evaluation, much positive verbal feedback was expressed by several participants. It 



must be acknowledged, however, that it is possible that any participants who may have had a less 

favorable perspective of the experience could have self-excluded their feedback by not 

completing the survey, even though it was anonymous. 

The highest rated response, with a mean of 5, and the only statement that was rated 

unanimously, was about the responsiveness of the instructors. This is probably a function of the 

small class size as well as having both a primary instructor and a support instructor to respond to 

participants in most of the sessions. This is a feature of the course design that will be maintained 

in future offerings. Both the quality of preparation and the importance of hands-on coding 

activities were highly rated at means of 4.7. The latter is no surprise; participants in a 

programming course that involves hands-on activities benefit from pedagogical practice that is 

far superior to lecturing alone. 

The lowest rated response was about the value of the post-session quizzes, with a mean of 

3.7. The quizzes were included as a form of summative assessment, but some participants 

indicated verbally in classes that the multiple-choice questions were too hard. One participant 

indicated this in an open text response in the survey, but also qualified that, while difficult, they 

were valuable for recalling and retaining information. A diminishing number of quizzes were 

completed each week. Two participants indicated that time constraints outside of class caused 

them to not take the quizzes. Upon completion of each quiz, participants were presented with 

their score and identification of which questions were answered correctly or incorrectly. With 

hindsight, the quizzes would have been more useful to participants if incorrect answers were 

accompanied by automated hints or explanations to help them discern the correct answer. This 

feature is available in LibWizard quizzes. 



Jupyter Notebooks were rated with a mean of 4.1 for being intuitive or easy to use. This 

rating can be interpreted by some textual comments, where frustration with the kernel being 

dropped necessitating re-running of code cells in the notebook was mentioned by several 

respondents. Similarly, the mean rating of 4.3 for the usefulness of the learning content should be 

interpreted in the context of participant expectations expressed at the beginning of the course. 

Those who aspired to learn Python for Geographic Information Systems or image analysis during 

this workshop series, for example, might have found the content too rudimentary. 

Some of the challenges that were experienced could perhaps be mitigated with a different 

pedagogical approach. The varied rates at which participants understood programming concepts 

and could apply them in exercises made it difficult to set a pace for the sessions that would suit 

all learners. Flipped learning inverts the classroom lecture and homework model whereby 

students are introduced to new material in their own time and at their own pace, while engaging 

in hands-on activities and assignments in the classroom with the support of the teacher. While 

the learning material might be in the form of e-textbooks, documents, or videos, studies 

demonstrate student preference for online videos prepared by the teacher (Bakheet & Gravell, 

2021). 

The flipped model has been shown to improve student satisfaction and performance, 

although it, too, presents challenges when students fail to prepare before class or need assistance 

in viewing learning content (Akçayır & Akçayır, 2018). In studies of flipped learning in computer 

programming classes, student performance in the flipped learning environment increased 

compared both to control groups and previous iterations of a class taught in a traditional format 

(Ruiz de Miras et al., 2022; Taşpolat et al., 2021). While student feedback is generally positive 

about this style of learning in programming classes, it has also been suggested that the self-study 



component can be less effective for more advanced programming topics, necessitating a blend of 

the traditional and the flipped classroom (Davenport, 2018). 

The main barrier to implementing the flipped learning model at Fort Johnson is the time 

participants would need to invest outside of the classroom to learn programming concepts. 

Having observed participants achieve understanding at different rates, some people would clearly 

need to spend considerably more time than others to comprehend programming concepts. Most 

participants were practicing professionals with diverse roles and varying levels of autonomy in 

choosing their work activities and schedules. Graduate students must also negotiate existing 

course/lab work, employment, and research responsibilities to be able to participate. The time 

required to prepare for and attend each session could be prohibitive for some people to 

participate at all. This can also be true for a traditional course approach with homework 

assignments, as was experienced by graduate students in both a graduate Python course and an 

optional workshop series (Chapman & Irwin, 2015; Zuvanov et al., 2021). 

The adaptation to a hybrid course was made in response to emerging participant needs. In 

the post-course evaluation, preferences for in-person and live online attendance options were 

equal at seven responses each. Hybrid training, with both in-person and remote participation, 

presents challenges for incorporating group work in the form of creative design and/or problem-

solving activities. Peer collaboration is a valuable active learning method that has been used 

effectively in other programming courses, ranging from pair programming to small group work, 

and incorporating peer review of coding efforts (Chapman & Irwin, 2015; David, 2021; Porter et al., 

2013). Furthermore, the use of pair programming in introductory undergraduate computer science 

courses has been demonstrated to contribute positively to student performance and retention 

(McDowell et al., 2006; Porter & Simon, 2013). More recently, distributed pair programming, using 



tools developed for facilitating remote collaborative coding, has been evaluated positively by 

both high school and undergraduate participants in remote computer science courses (Bigman et 

al., 2021; Satratzemi et al., 2018). The software infrastructure for remote participant 

collaboration is evolving and could potentially be utilized in future programming courses offered 

at Fort Johnson. 

One comment about the course noted that the installation and configuration of Python 

and an Integrated Development Environment (IDE) as well as using a command line terminal 

were not addressed. This was intentional both due to the complexity of navigating institutional 

policies for installing software on federal and state laptops, as well as the time needed to help all 

participants install software on disparate systems. However, to facilitate and encourage the 

ongoing programming and learning of course participants, at least an introduction to these 

concepts would have been useful. Python distributions such as Anaconda feature a Graphical 

User Interface (GUI), an IDE (Spyder, in the case of Anaconda), and convenient management of 

Python libraries and dependencies (David, 2021). This is something to consider including in a 

future version of the course. 

Interest in the four suggested future sessions was varied. Respondents demonstrated 

greatest interest in data visualization and data manipulation/analysis. These subjects are broadly 

applicable in many areas of research, so it is logical that they were popular options. The greatest 

distribution of interest, including the lowest Likert score, related to using Python with 

RaspberryPi minicomputers. This is likely due to varied awareness of both what a RaspberryPi is 

and how it could be used in scientific research. Anecdotally, we were aware of two participants 

with specific interest in this. Moderate interest was expressed in image analysis and associated 

machine learning. No additional subjects were suggested by respondents. 



In this Python training series, the trainers both had existing Python skills and were active 

programmers. But in libraries where no personnel possess sufficient programming knowledge or 

experience to offer a course like this, an opportunity for partnership exists to use existing 

knowledge in the broader academic or research community. For example, at academic 

institutions with computer science programs, faculty or graduate students may be available to 

provide or support a short programming course. The library might coordinate, sponsor, or host 

training sessions where the coding expertise is provided from elsewhere. Instructional librarians 

can often provide pedagogical insight to partner with a programmer to design an effective 

training program, including using available technology to maximum effect. 

 

Recommendations 

Feedback from participants confirms that the inclusion of information about setting up a Python 

environment is key for ongoing skill development and application of Python. Whether by 

including a training session on setting up a Python environment or by providing web-based 

tutorials, future iterations of this class should include guidance on installing Python, Python 

libraries, and an IDE. The Anaconda package is ideal for installing these components. 

Course objectives and an outline of the curriculum should ideally be made available to 

participants before they register for the course. The provision of this information will help align 

participant expectations with what is being offered. In addition, a description of how teaching 

and learning will occur will ensure that participants enter the course aware of what to expect. 

This practice is standard in academic contexts and will potentially mitigate surprises and 

consequential reduced participation after the course begins (Zuvanov et al., 2021). 



While it is difficult to make course content contextually relevant to all individuals due to 

the diverse research undertaken across all participants, there is potential to facilitate individuals 

using a sample of their own data in the course during some active learning exercises. In addition, 

this would be particularly appropriate in higher level courses on data processing with the Pandas 

library and data visualization with the Matplotlib library. Use of real datasets should be 

incorporated into the session design wherever possible. Participants want to understand how the 

training can positively impact their work, so the connection to real data is important. 

Maintaining momentum is important in learning and maintaining knowledge about 

programming. In response to participant feedback, expressed interest in future learning, and 

instructor observations, the following recommendations are considered a priority for the ongoing 

development of Python training at Fort Johnson: 

 

● Offer a session on installing a Python environment to previous introductory course 

participants 

● Offer a revised introductory course in Winter 2022, when the fieldwork season is over. 

○ Publish course outline with registration so that participants can align expectations 

with what is covered 

○ Try to group participants by programming experience level 

○ Ask participants to bring sample data to use, or design a case study with 

contextually relevant data 

● Develop and offer two short courses and resource guides for data visualization 

(Matplotlib) and data processing (Pandas) 



● Build instructor experience with image and video analysis and machine learning, to 

showcase their application in marine science and generate interest in learning these 

competencies. 

● Follow up with participants after the course to keep momentum going 

● Develop a local Python users’ group to encourage communication and collaboration in 

programming activities. 

  

Last, due to the occasional problems experienced with the hosted JupyterHub including slow 

launch speeds and service downtime, exploration of self-hosting a Jupyter Notebook server or 

using a different service is recommended. 

 

 

Conclusion 

As programming competencies are increasingly required for scientists to process and analyze the 

volumes of data generated by research, Python has emerged as a popular general purpose 

programming language that can support a variety of data processing operations. The syntax of 

Python reduces barriers to learning this language and the many freely available web-based 

tutorials and discussion boards facilitate independent learning. While a competent Python 

programmer must ultimately be able to consult the official Python documentation as well as 

these other resources, the purpose of introductory courses such as the one described in this paper 

is threefold. Course participants must become aware of the capabilities and potential applications 

of Python, learn and apply the fundamental competencies of programming with Python, and 

become aware of resources to help them become independent in expanding their own skillset. To 



encourage budding programmers to maintain momentum ongoing communication and 

facilitation of networking with peer programmers is recommended as part of a training program. 

 

U.S. National Oceanic and Atmospheric Administration Disclaimer: The scientific results and 

conclusions, as well as any opinions expressed herein, are those of the author(s) and do not 

necessarily reflect the views of NOAA or the Department of Commerce. The mention of any 

commercial product is not meant as an endorsement by the Agency or Department. 

 

Works Cited 

Akçayır, G., & Akçayır, M. (2018). The flipped classroom: A review of its advantages and challenges. 

Computers & Education, 126, 334–345. https://doi.org/10.1016/J.COMPEDU.2018.07.021 

Alman, S. W., Frey, B. A., & Tomer, C. (2012). Social and cognitive presence as factors in learning and 

student retention: An investigation of the cohort model in an iSchool setting. Journal of Education 

for Library and Information Science, 53(4), 290–302. 

Badenhorst, M., Barry, C. J., Swanepoel, C. J., van Staden, C. T., Wissing, J., & Rohwer, J. M. (2019). 

Workflow for data analysis in experimental and computational systems biology: Using Python as 

‘glue.’ Processes, 7(7), 460. https://doi.org/10.3390/PR7070460 

Bakheet, E. M., & Gravell, A. M. (2021). Would flipped classroom be my approach in teaching 

computing courses: Literature review. 2021 9th international conference on information and 

education technology, ICIET 2021, 166–170. https://doi.org/10.1109/ICIET51873.2021.9419631 

Bigman, M., Roy, E., Garcia, J., Suzara, M., Wang, K., & Piech, C. (2021). PearProgram: A more fruitful 

approach to pair programming. Proceedings of the 52nd ACM technical symposium on computer 

science education. https://doi.org/10.1145/3408877 



Casanova-Arenillas, S., Rodríguez-Tovar, F. J., & Martínez-Ruiz, F. (2020). Applied ichnology in 

sedimentary geology: Python scripts as a method to automatize ichnofabric analysis in marine core 

images. Computers & Geosciences, 136, 104407. https://doi.org/10.1016/J.CAGEO.2020.104407 

Chapman, B. E., & Irwin, J. (2015). Python as a first programming language for biomedical scientists. 

Proceedings of the 14th Python in science conference. https://doi.org/10.25080/MAJORA-

7B98E3ED-002 

Davenport, C. (2018). Evolution in student perceptions of a flipped classroom in a computer 

programming course. Journal of College Science Teaching, 047(04). 

https://doi.org/10.2505/4/jcst18_047_04_30 

David, A. A. (2021). Introducing Python programming into undergraduate biology. The American 

Biology Teacher, 83(1), 33–41. https://doi.org/10.1525/ABT.2021.83.1.33 

Davies, A., Hooley, F., Causey-Freeman, P., Eleftheriou, I., & Moulton, G. (2020). Using interactive 

digital notebooks for bioscience and informatics education. PLOS Computational Biology, 16(11), 

e1008326. https://doi.org/10.1371/JOURNAL.PCBI.1008326 

Ekmekci, B., McAnany, C. E., & Mura, C. (2016). An introduction to programming for bioscientists: A 

Python-based primer. PLOS Computational Biology, 12(6), e1004867. 

https://doi.org/10.1371/JOURNAL.PCBI.1004867 

Greening, T. (1998). Scaffolding for success in problem-based learning. Medical Education Online, 3(1), 

4297. https://doi.org/10.3402/meo.v3i.4297 

Grévisse, C., Rothkugel, S., & Reuter, R. A. P. (2019). Scaffolding support through integration of 

learning material. Smart Learning Environments, 6(1), 1–24. https://doi.org/10.1186/S40561-019-

0107-0 

Kim, B., & Henke, G. (2021). Easy-to-use cloud computing for teaching data science. Journal of 

Statistics and Data Science Education, 29(sup1), S103–S111. 

https://doi.org/10.1080/10691898.2020.1860726 



Lewis, K. P., vander Wal, E., & Fifield, D. A. (2018). Wildlife biology, big data, and reproducible 

research. Wildlife Society Bulletin, 42(1), 172–179. https://doi.org/10.1002/wsb.847 

Mariano, D., Martins, P., Helene Santos, L., & de Melo- Minardi, R. C. (2019). Introducing programming 

skills for life science students. Biochemistry and Molecular Biology Education, 47(3), 288–295. 

https://doi.org/10.1002/BMB.21230 

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming improves student 

retention, confidence, and program quality. Communications of the ACM, 49(8), 90–95. 

https://doi.org/10.1145/1145287.1145293 

Perkel, J. M. (2018). Why Jupyter is data scientists’ computational notebook of choice. Nature, 

563(7729), 145–146. https://doi.org/10.1038/D41586-018-07196-1 

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013). Success in introductory programming. 

Communications of the ACM, 56(8), 34–36. https://doi.org/10.1145/2492007.2492020 

Porter, L., & Simon, B. (2013). Retaining nearly one-third more majors with a trio of instructional best 

practices in CS1. SIGCSE 2013 - Proceedings of the 44th ACM technical symposium on computer 

science education, 165–170. https://doi.org/10.1145/2445196.2445248 

Rausch, D. W., & Crawford, E. K. (2012). Cohorts, communities of inquiry, and course delivery methods: 

UTC best practices in learning-the hybrid learning community model. Journal of Continuing Higher 

Education, 60(3), 175–180. https://doi.org/10.1080/07377363.2013.722428 

Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education. PLOS 

Computational Biology, 10(11), e1003897. https://doi.org/10.1371/JOURNAL.PCBI.1003897 

Ruiz de Miras, J., Balsas-Almagro, J. R., & García-Fernández, Á. L. (2022). Using flipped classroom and 

peer instruction methodologies to improve introductory computer programming courses. Computer 

Applications in Engineering Education, 30(1), 133–145. https://doi.org/10.1002/CAE.22447 

Satratzemi, M., Xinogalos, S., Tsompanoudi, D., & Karamitopoulos, L. (2018). Examining student 

performance and attitudes on distributed pair programming. Scientific Programming, 2018. 

https://doi.org/10.1155/2018/6523538 



Saunders, J. K., Gaylord, D. A., Held, N. A., Symmonds, N., Dupont, C. L., Shepherd, A., Kinkade, D. 

B., & Saito, M. A. (2020). METATRYP v 2.0: Metaproteomic least common ancestor analysis for 

taxonomic inference using specialized sequence assemblies - Standalone software and web servers 

for marine microorganisms and coronaviruses. Journal of Proteome Research, 19(11), 4718–4729. 

https://doi.org/10.1021/acs.jproteome.0c00385 

Taşpolat, A., Özdamli, F., & Soykan, E. (2021). Programming language training with the flipped 

classroom model. SAGE Open, 11(2), 215824402110214. 

https://doi.org/10.1177/21582440211021403 

The Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Herterich, P., Higman, R., Krystalli, A., 

Morley, A., O’Reilly, M., & Whitaker, K. (2019). Zero-to-binder. In The Turing Way: A Handbook 

for Reproducible Data Science. Zenodo. https://the-turing-

way.netlify.app/communication/binder/zero-to-binder.html 

Voskoglou, C., Witkowski, J., Stephens, J., Korakitis, K., & Muir, R. (2021). Developer economics, State 

of the developer nation 20th Ed., Q1 2021. https://developer-economics.cdn.prismic.io/developer-

economics/dbf9f36f-a31a-440a-9c22-c599cc235fa4_20th+edition+-

+State+of+the+developer+Nation.pdf 

Zuvanov, L., Garcia, A. L. B., Correr, F. H., Bizarria, R., da Costa Filho, A. P., da Costa, A. H., Thomaz, 

A. T., Pinheiro, A. L. M., Riano-Pachón, D. M., Winck, F. V., Esteves, F. G., Margarido, G. R. A., 

Casagrande, G. M. S., Frajacomo, H. C., Martins, L., Cavalheiro, M. F., Grachet, N. G., da Silva, R. 

G. C., Cerri, R., … dos Santos, R. A. C. (2021). The experience of teaching introductory 

programming skills to bioscientists in Brazil. PLOS Computational Biology, 17(11), e1009534. 

https://doi.org/10.1371/JOURNAL.PCBI.1009534 

  

 

Appendix 1: Session Descriptions 
 



Session 1 – Introduction to Jupyter Notebooks, data types and data structures 

 

The first thirty minutes of Session 1 was set aside to introduce participants and instructors, 

review the goals of the course, obtain feedback about participants’ expectations, and introduce an 

online guide from which each week’s Jupyter Notebook could be opened. A brief introduction to 

the Jupyter Notebook environment was then reinforced by its use during the remainder of the 

session and all subsequent sessions. 

 

Learning Outcomes 

● Understand basic data types and structures 

● Test for data types 

● Create, modify, and read lists and dictionaries 

 

Session Content 

● Annotating code with comments 

● Introduction to integers, floats, and strings 

● Introduction to variables 

● Printing variables with the print() function 

● Testing variable data types with the type() function 

● Introduction to lists 

○ List indexes 

○ Testing list lengths with the len() function 

○ Slicing lists 



○ Modifying items in lists 

○ Modifying lists with the .append(), .insert(), and .pop() methods 

● Introduction to Dictionaries 

○ Obtaining a dictionary’s keys and values with the .keys(), .values(), and .items() 

methods 

○ Modifying items in dictionaries 

○ Adding items to dictionaries 

○ Removing items from dictionaries with the .pop() method 

 

  

Session 2 - Getting content from iterables like lists and dictionaries 

          

Learning Outcomes 

● Understand when looping is needed 

● Design a loop 

● Use logic to achieve desired outcome in each iteration of a loop 

 

Session Content 

● Indentation in Python 

● The For loop 

○ Iterating over a list 

■ Iterating to retrieve list values 

■ Iterating to retrieve list values and indexes with the enumerate() function 



■ Nested lists 

■ Iterating over nested lists with nested loops 

○ Iterating over a dictionary 

○ Iterating to retrieve keys, values, and both keys and values 

○ Iterating over mixed data structures (combination of nested lists and dictionaries) 

● The While loop 

○ Creating a counter and counter conditions 

○ Comparison operators (<, <=, ==, >=, >, !=)   

○ Conditional statements and logical flow with if…elif…else statements 

○ Logical operators in conditional statements (introducing and & or) 

                

  

Session 3 - Creating and calling user-defined functions 

 

Learning Outcomes 

● Understand why user defined functions are useful 

● Design a function and its parameters 

● Use a function with appropriate arguments 

 

Session Content 

● Introducing user defined functions and demonstrating their role in code 

● Creating a function with a parameter 

● Calling a function and passing an argument 



● Returning data from a function 

● Functions with multiple parameters 

● Functions with default arguments 

● Calling a function with keyword arguments 

● Local and Global variables 

                            

   

Session 4 - Working with CSV files 

 

Learning Outcomes 

● Understand how to read and write CSV file content 

● Design loops and logic to access CSV data 

● Evaluate errors and resolve data type problems with CSV data 

● Design data structures to write data to a CSV file 

 

Session Content 

● Importing non-core libraries 

● Exploring the csv library with the dir() function 

● Using the help() function to understand specific functions 

● Reading a CSV file 

○ Opening a CSV file for reading in the context of the ‘with’ statement 

■ Parameters used with file opening 

■ Creating a csv.reader object 



● Iterating over a csv.reader object 

● Converting a csv.reader object to a list with the list() function 

■ Creating a csv.DictReader object 

● Converting a csv.DictReader object to a list with the list() function 

● Iterating over a list of dictionaries to retrieve data 

● Characteristics of data from CSV files 

○ Determining the type of an empty cell 

○ Replacing/removing characters from strings with the .replace() method 

○ Casting a string as an integer with the int(function) 

○ Rounding floats resulting from mathematical operations with the round() function 

● Writing a CSV file 

○ Opening a CSV file for writing in the context of the ‘with’ statement 

○ Creating a csv.writer object 

■ Writing a single row using a list with the .writerow() method 

■ Writing multiple rows using nested lists with the .writerows() method 

○ Creating a csv.DictWriter object with a list of field names as column headings 

■ Writing column headings with the .writeheader() method 

■ Writing multiple rows from a dictionary with the .writerows method 

■ Handling default values for missing data with DictWriter ‘restval’ 

parameter 

■ Raising errors for unanticipated keys in the data with DictWriter 

‘extrasaction’ parameter 

                      



 

Session 5 - Searching for string matches in data structures and matching patterns in data with 

regular expressions 

 

Learning Outcomes 

● Understand the concept of membership 

● Design tests for membership in different data types/structures 

● Understand pattern matching 

● Design a regular expression  

● Evaluate results of pattern matching functions 

 

Session Content 

● Membership and the Python ‘in’ operator 

○ Using the in operator with conditional statements 

○ Testing for membership in strings 

○ Testing for membership in lists and in strings in lists 

○ Testing for membership in dictionaries and in dictionary keys and values 

● Regular expressions 

○ Importing the re library 

○ Simple matching of a specific string 

■ Searching for a (the first) match with the re.search() function 

● The match object and its attributes 

● Retrieving the match with the .group() method 



● The NoneType and testing for NoneType 

■ Searching for all matches with the re.findall() function 

● The re.findall() response (a list) with and without matches 

● Counting matches with the len() function 

■ Searching for all matches with the re.finditer() function 

● Iterating over the matches object 

● Retrieving the matching pattern with the .group() method 

○ Constructing a regex to match multiple word endings 

○ Constructing a regex to match multiple patterns 

○ Using the Pythex (https://pythex.org/) tool to design and test regexes 

○ The Pythex regex cheat sheet 

                         

  

Session 6 - Getting web-based data from Application Programming Interfaces (APIs) 

 

Learning Outcomes 

● Understand the purpose of an API 

● Evaluate the structure of an API 

● Design a requests query for an API 

● Understand the format of API data 

● Access and use API data 

 

Session Content 

https://pythex.org/


● Importing the requests library 

● The get and post methods of HTTP requests 

● The World Register of Marine Species (WoRMS) API structure and documentation 

○ Constructing requests to various applications of WoRMS 

○ Formatted strings and incorporation of variables 

○ Introduction to JSON 

○ Response objects and the .url, .text, and .status_code attributes 

○ Decoding JSON data with the .json() method 

○ Determining the structure of returned data 

○ Designing a recursive function to iterate over predictable data structures of 

unpredictable depth 

● The NOAA Tides and Currents API structure and documentation 

○ Passing key value pairs in a URL 

○ Constructing a request including data in key value pairs, using a dictionary and 

the ‘params’ parameter 

○ Visualizing complex output clearly with the pprint library. 

○ Teaser about plotting data with the matplotlib.pyplot library 

○ Requesting and handling responses in different formats (JSON, XML, and CSV) 

● An overview of authentication and APIs 

                  

  

Session 7 - Working with Classes 

 



Learning Outcomes 

● Understand the concept of Object-Oriented Programming 

● Understand instance variables and attributes 

● Understand class and static methods 

 

Session Content 

● Making an object 

● Creating a blank class instance and assigning variables 

● Defining a simple class with variables and functions 

● Class and Instance Variables 

● Class variables - list concerns 

● Fixing the class list variable issue by using an instance variable 

● Class and instance variables - integers 

● Use of class init to assign values 

● Working with Getters and Setters - ways to control access to private variables and 

 validate input 

● Assigning new class operands 

● Inheritance - how to include one class within another 

● Use of class methods to make a class instance 

● Use of static methods to make a namespace 

● Use of dataclass 


	From Zero to Python in 10.5 hours: Building Foundational Programming Skills with Marine Biology Graduate Students and Researchers in an Introductory Workshop Series
	Introduction
	Course Design and Content
	Running the Course
	Outcomes
	Discussion
	Recommendations
	Conclusion
	Works Cited
	Appendix 1: Session Descriptions

